Bringing Matplotlib to the Browser

mpld3.mpld3renderer

Contents

Source code for mpld3.mpld3renderer

"""
mpld3 renderer
==============

This is the renderer class which implements the mplexporter framework for mpld3
"""
__all__ = ["MPLD3Renderer"]

import random
import json
import jinja2
import itertools

import numpy as np

from .mplexporter.utils import color_to_hex
from .mplexporter.exporter import Exporter
from .mplexporter.renderers import Renderer

from .utils import get_id
from .plugins import get_plugins


[docs]class MPLD3Renderer(Renderer): """Renderer class for mpld3 This renderer class plugs into the ``mplexporter`` package in order to convert matplotlib figures into a JSON-serializable dictionary representation which can be read by mpld3.js. """ def __init__(self): self.figure_json = None self.axes_json = None self.finished_figures = [] @staticmethod def datalabel(i): return "data{0:02d}".format(i)
[docs] def add_data(self, data, key="data"): """Add a dataset to the current figure If the dataset matches any already added data, we use that instead. Parameters ---------- data : array_like a shape [N,2] array of data key : string (optional) the key to use for the data Returns ------- datadict : dictionary datadict has the keys "data", "xindex", "yindex", which will be passed to the mpld3 JSON object. """ # Check if any column of the data exists elsewhere # If so, we'll use that dataset rather than duplicating it. data = np.asarray(data) if data.ndim != 2 and data.shape[1] != 2: raise ValueError("Data is expected to be of size [N, 2]") for (i, d) in enumerate(self.datasets): if data.shape[0] != d.shape[0]: continue matches = np.array([np.all(col == d.T, axis=1) for col in data.T]) if not np.any(matches): continue # If we get here, we've found a dataset with a matching column # we'll update this data with additional columns if necessary new_data = list(self.datasets[i].T) indices = [] for j in range(data.shape[1]): whr = np.where(matches[j])[0] if len(whr): indices.append(whr[0]) else: # append a new column to the data new_data.append(data[:, j]) indices.append(len(new_data) - 1) self.datasets[i] = np.asarray(new_data).T datalabel = self.datalabel(i + 1) xindex, yindex = map(int, indices) break else: # else here can be thought of as "if no break" # if we get here, then there were no matching datasets self.datasets.append(data) datalabel = self.datalabel(len(self.datasets)) xindex = 0 yindex = 1 self.datalabels.append(datalabel) return {key: datalabel, "xindex": xindex, "yindex": yindex}
def open_figure(self, fig, props): self.datasets = [] self.datalabels = [] self.figure_json = dict(width=props['figwidth'] * props['dpi'], height=props['figheight'] * props['dpi'], axes=[], data={}, id=get_id(fig)) def close_figure(self, fig): additional_css = [] additional_js = [] for i, dataset in enumerate(self.datasets): datalabel = self.datalabel(i + 1) self.figure_json['data'][datalabel] = np.asarray(dataset).tolist() self.figure_json["plugins"] = [] for plugin in get_plugins(fig): self.figure_json["plugins"].append(plugin.get_dict()) additional_css.append(plugin.css()) additional_js.append(plugin.javascript()) self.finished_figures.append((fig, self.figure_json, "".join(additional_css), "".join(additional_js))) def open_axes(self, ax, props): self.axes_json = dict(bbox=props['bounds'], xlim=props['xlim'], ylim=props['ylim'], xdomain=props['xdomain'], ydomain=props['ydomain'], xscale=props['xscale'], yscale=props['yscale'], axes=props['axes'], axesbg=props['axesbg'], axesbgalpha=props['axesbgalpha'], zoomable=bool(props['dynamic']), id=get_id(ax), lines=[], paths=[], markers=[], texts=[], collections=[], images=[]) self.figure_json['axes'].append(self.axes_json) # Get shared axes info xsib = ax.get_shared_x_axes().get_siblings(ax) ysib = ax.get_shared_y_axes().get_siblings(ax) self.axes_json['sharex'] = [get_id(axi) for axi in xsib if axi is not ax] self.axes_json['sharey'] = [get_id(axi) for axi in ysib if axi is not ax] def close_axes(self, ax): self.axes_json = None # If draw_line() is not implemented, it will be delegated to draw_path # Should we get rid of this? There's not really any advantage here def draw_line(self, data, coordinates, style, label, mplobj=None): line = self.add_data(data) line['coordinates'] = coordinates line['id'] = get_id(mplobj) for key in ['color', 'linewidth', 'dasharray', 'alpha', 'zorder']: line[key] = style[key] if 'drawstyle' in style: line['drawstyle'] = style['drawstyle'] # Some browsers do not accept dasharray="10,0" # This should probably be addressed in mplexporter. if line['dasharray'] == "10,0": line['dasharray'] = "none" self.axes_json['lines'].append(line) def draw_path(self, data, coordinates, pathcodes, style, offset=None, offset_coordinates="data", mplobj=None): path = self.add_data(data) path['coordinates'] = coordinates path['pathcodes'] = pathcodes path['id'] = get_id(mplobj) if offset is not None: path['offset'] = list(offset) path['offsetcoordinates'] = offset_coordinates for key in ['dasharray', 'alpha', 'facecolor', 'edgecolor', 'edgewidth', 'zorder']: path[key] = style[key] # Some browsers do not accept dasharray="10,0" # This should probably be addressed in mplexporter. if path['dasharray'] == "10,0": path['dasharray'] = "none" self.axes_json['paths'].append(path) # If draw_markers is not implemented, it will be delegated to draw_path def draw_markers(self, data, coordinates, style, label, mplobj=None): markers = self.add_data(data) markers["coordinates"] = coordinates markers['id'] = get_id(mplobj, 'pts') for key in ['facecolor', 'edgecolor', 'edgewidth', 'alpha', 'zorder']: markers[key] = style[key] if style.get('markerpath'): vertices, codes = style['markerpath'] markers['markerpath'] = (vertices.tolist(), codes) self.axes_json['markers'].append(markers) # If draw_path_collection is not implemented, # it will be delegated to draw_path def draw_path_collection(self, paths, path_coordinates, path_transforms, offsets, offset_coordinates, offset_order, styles, mplobj=None): if len(paths) != 0: styles = dict(alphas=[styles['alpha']], edgecolors=[color_to_hex(ec) for ec in styles['edgecolor']], facecolors=[color_to_hex(fc) for fc in styles['facecolor']], edgewidths=styles['linewidth'], offsetcoordinates=offset_coordinates, pathcoordinates=path_coordinates, zorder=styles['zorder']) pathsdict = self.add_data(offsets, "offsets") pathsdict['paths'] = [(v.tolist(), p) for (v, p) in paths] pathsdict['pathtransforms'] = [(t[0, :2].tolist() + t[1, :2].tolist() + t[2, :2].tolist()) for t in path_transforms] pathsdict.update(styles) pathsdict['id'] = get_id(mplobj) self.axes_json['collections'].append(pathsdict) def draw_text(self, text, position, coordinates, style, text_type=None, mplobj=None): text = dict(text=text, position=tuple(position), coordinates=coordinates, h_anchor=TEXT_HA_DICT[style['halign']], v_baseline=TEXT_VA_DICT[style['valign']], rotation=-style['rotation'], fontsize=style['fontsize'], color=style['color'], alpha=style['alpha'], zorder=style['zorder'], id=get_id(mplobj)) self.axes_json['texts'].append(text) def draw_image(self, imdata, extent, coordinates, style, mplobj=None): image = dict(data=imdata, extent=extent, coordinates=coordinates) image.update(style) image['id'] = get_id(mplobj) self.axes_json['images'].append(image)
TEXT_VA_DICT = {'bottom': 'auto', 'baseline': 'auto', 'center': 'central', 'top': 'hanging'} TEXT_HA_DICT = {'left': 'start', 'center': 'middle', 'right': 'end'}

Contents