Python source code: [download source: random_walk.py]
Visualizing Random Walks
========================
This shows the use of transparent lines to visualize random walk data.
There is also a custom plugin defined which causes lines to be highlighted
when the mouse hovers over them.
Use the toolbar buttons at the bottom-right of the plot to enable zooming
and panning, and to reset the view.
"""
import jinja2
import json
import numpy as np
import matplotlib.pyplot as plt
import mpld3
from mpld3 import plugins, utils
class HighlightLines(plugins.PluginBase):
"""A plugin to highlight lines on hover"""
JAVASCRIPT = """
mpld3.register_plugin("linehighlight", LineHighlightPlugin);
LineHighlightPlugin.prototype = Object.create(mpld3.Plugin.prototype);
LineHighlightPlugin.prototype.constructor = LineHighlightPlugin;
LineHighlightPlugin.prototype.requiredProps = ["line_ids"];
LineHighlightPlugin.prototype.defaultProps = {alpha_bg:0.3, alpha_fg:1.0}
function LineHighlightPlugin(fig, props){
mpld3.Plugin.call(this, fig, props);
};
LineHighlightPlugin.prototype.draw = function(){
for(var i=0; i<this.props.line_ids.length; i++){
var obj = mpld3.get_element(this.props.line_ids[i], this.fig),
alpha_fg = this.props.alpha_fg;
alpha_bg = this.props.alpha_bg;
obj.elements()
.on("mouseover", function(d, i){
d3.select(this).transition().duration(50)
.style("stroke-opacity", alpha_fg); })
.on("mouseout", function(d, i){
d3.select(this).transition().duration(200)
.style("stroke-opacity", alpha_bg); });
}
};
"""
def __init__(self, lines):
self.lines = lines
self.dict_ = {"type": "linehighlight",
"line_ids": [utils.get_id(line) for line in lines],
"alpha_bg": lines[0].get_alpha(),
"alpha_fg": 1.0}
N_paths = 50
N_steps = 100
x = np.linspace(0, 10, 100)
y = 0.1 * (np.random.random((N_paths, N_steps)) - 0.5)
y = y.cumsum(1)
fig, ax = plt.subplots(subplot_kw={'xticks': [], 'yticks': []})
lines = ax.plot(x, y.T, color='blue', lw=4, alpha=0.1)
plugins.connect(fig, HighlightLines(lines))
mpld3.show()